Department of Computer Science (Entire) Revised Syllabus of II Year Diploma Program (UG) (2020-2)

* Title of Program: Artificial Intelligence with Python

* Syllabus Structure (UG)

Year	Semester	Course No.	Course Code	Contact Hours	Credits (1Credit=15 H)	Total Marks 75	
	III	CT III	DCSET 303	30	2		
		CL III	DCSEL303	60	2	75	
2	IV	CT IV	DCSET 404	30	2	75	
		CL IV	DCSEL404	60	2	75	
-	Annual	CP II	DCSEP202	30	1	50	
	Industrial a Research	nd or Incuba and or Field	tion and or Training	30	1	-	
			Total	240	10	350	

D: Diploma, CSE: Computer Science (Entire), C: Course, T: Theory, L: Lab (Practical), P: Project

Total No. of Courses: 6 (Theory: 02, Practical: 02, Project: 01)

Theory and Practical: Semester, Project: Annual

Evaluation Structure :-

1	Theory (75 per Semester) (Marks = 150 per year)						1	Practical (75 per Semester) (Marks = 150 per wear)							Project (Angual)					
1	este	Cours	1	Internal (35 Assessment		DESE				Internal (35) Assessment		DESE (40)		Γ	T	1 year	Presenta	=100)	Total	Total
1×e	ar	No.	Code	DISE	Atten	(40)	Total	No.	Course Code	Lab Work	Attend	Exam	Lab Work Book	Tota	No,	Course	Viva-Voce Oral	ation	1	Marks
1.	-	ICTI	D*T 101	30	5	40	75	CLI	D*L102	30	5	30	10	1 75		De			-	
1.	1 H	JCTN	D*T 202	30	5	40	75	CLH	D*1.202	30	5	30	10	75	CPI	P101	25	25	50	
-					T	otal	150						Total	150		11101				
1	111	CTI	D°T 303	30	5	40	75	CL III	D*L303	30	5 1	30	10	78				Total	50	350
1 "	IV	CTIV	D°T 404	30	5	40	75	CLIV	D*1404	30	51	20	10	12	CPII	Do l	25	25	50	
-		_	_		To	tal	150	0 Tand 400 10 75 17 202												
-	VK	CTV I	D*T 505	30	5 1	40	75	CLV I	D*1.505	30 1	ST	30 1	IO	130				Total	100	350
B	VIK	TVI	D*T 606	30	5 .	40	75	CLVI	D*L 604	30	5	20	10	12	CP III	De	50	50	100	
					Tot	all	150		- strid			50 1	Tatal	13		P 303		50	100	
	Total o	f Three	Years 6	03	00 1:	5 4	150		Total	60 T	15 1	740 1	40	150				Total	100	400
							-				10	210	00 1	4501	1	otali	100	100 1	200	1100

D: Diploma, *: Departmental Code (C: Chemistry, MI: Microbiology, CSE: Computer Science (Entire), etc)

C: Course, T: Theory, L: Lab (Practical), P: Project

Theory and Practical: Semester, Project: Annual

DISE I and II: Diploma Internal Semester Examination (online) for I and II Semester

DESE I and II: Diploma End Semester Examination for I and II Semester

Diploma Programme: Total Marks I and II Year: 150 (Theory) + 150 (Practical) +50 (Project) = 350.

Total Marks III Year: 150 (Theory) + 150 (Practical) +100 (Project) = 400 a 1

Diploma Programme, YCIS(Autonomous), Satara

Semester III

D CSET 303: Techniques of AI

(Contact Hrs: 30 Credits: 2)

Learning Objectives:

Students will be able to

- 1. To learn various types of algorithms useful in Artificial Intelligence (AI).
- 2. To convey the ideas in AI research and programming language related to emerging technology.
- 3. To understand the numerous applications and huge possibilities in the field of AI that goes beyond the normal human imagination

Unit I: Searching Techniques

Defining AI problems as a State Space Search: example, Search and Control Strategies, Problem Characteristics, Issues in Design of Search Programs, Production System. Blind Search Techniques: -BFS, DFS, DLS, Iterative Deepening, Search, Bidirectional Search, Uniform cost Search. Heuristic search techniques: -Generate and test, Hill Climbing, Best First search, Constraint Satisfaction, Mean-End Analysis, A*,AO*.

Unit II: Knowledge Representation

Representations and Mappings, Approaches to Knowledge Representation, Knowledge representation method, Propositional Logic, Predicate logic, Representing Simple facts in Logic, Resolution, Forward and backward chaining. Game Playing- Minimax Search Procedures, Adding alpha-beta cutoffs.

Learning Outcomes:

- 1. Student should understand knowledge representation.
- 2. Student should get knowledge about Searching Techniques.

Reference Books:

- 1. Stuart Russell and Peter Norvig (1995), Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.
- 2. Shai shalev-shwartz, Shai Ben-David: Understanding Machine Learning from Theory to algorithms, Cambridge University Press
- 3. Artificial Intelligence by Elaine Rich, Kevin Knight and Nair, TMH
- BoS Content: Books, Course Notes, Digital contents, Blogs developed by the BoS for bridging the gaps in the syllabus, problem solving approaches and advances in the course

Diploma Programme, YCIS(Autonomous), Satara

2

(15)

(15)

DCSEL303: (Practical): (Contact Hrs: 60 Credits: 02)

Learning Objectives:

Students will be able to

- 1. Understand Searching Techniques with Programming.
- 2. Learn the concept of forward and backward chaining.
- 3. Learn to create small game application.

List of Practical's

- 1. Write a program to implement Simple Chatbot.
- 2. Write a program to implement Breadth First Search Traversal.
- 3. Write a program to implement Depth First Search Traversal.
- 4. Write a program to implement Water Jug Problem
- 5. Write a program to implement Bidirectional Search
- 6. Write a program to implement heuristic search procedure.
- 7. Program to implement a* algorithm.
- 8. Write a program to implement tic tac toe game for 0 and X.
- 9. Write a program to implement Uniform cost Search.
- 10. Write a program to implement Forward and backward chaining

Learning Outcomes:

Student should get knowledge about-

- 1. How to use different control structures
- 2. How to implement Depth First Search
- 3. How to implement heuristic search
- 4. How to implement a* algorithm.

Reference Books:

- 5. Stuart Russell and Peter Norvig (1995), Artificial Intelligence: A Modern Approach," Third
- 6. Shai shalev-shwartz, Shai Ben-David: Understanding Machine Learning from Theory to
- algorithms, Cambridge University Press 7. Artificial Intelligence by Elaine Rich, Kevin Knight and Nair, TMH
- 8. BoS Content: Books, Course Notes, Digital contents, Blogs developed by the BoS for bridging the gaps in the syllabus, problem solving approaches and advances in the course

Semester IV

DCSET 404: Python Programming

(Contact Hrs: 30 Credits: 2)

Learning Objectives:

Students will be able to

- 1. To learn advanced modules and packages of AI.
- 2. To learn Symbolic and Statistical Reasoning.

Unit I: Al with Python

(15)

Introduction to Python , why python with AI, Basic and advanced modules & Packages, Python Decorators and generators .Advanced Objects & Data structures.

Start coding with Python, drawing upon libraries and automation scripts to solve complex problems quickly.

Unit II: Symbolic Reasoning under uncertainty and Statistical Reasoning (15)

Introduction to non monotonic reasoning, logic for non monotonic reasoning, implementation issues, probability and Baye's Theorem in certainty factor and Rule – Based systems, Bayesian Networks, Demster Shafer Theory, Fuzzy logic.

Learning Outcomes:

- 1. Student should get Knowledge of Advanced Objects & Data structures of AI.
- 2. Student should get Knowledge of non monotonic reasoning.

Reference Books:

- 9. Stuart Russell and Peter Norvig (1995), Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.
- 10. Shai shalev-shwartz, Shai Ben-David: Understanding Machine Learning from Theory to algorithms, Cambridge University Press
- 11. Artificial Intelligence by Elaine Rich, Kevin Knight and Nair, TMH
- 12. BoS Content: Books, Course Notes, Digital contents, Blogs developed by the BoS for bridging the gaps in the syllabus, problem solving approaches and advances in the course

Diploma Programme, YCIS(Autonomous), Satara

DCSEL404: (Practical): (Contact Hrs: 60 Credits: 02)

Learning Objectives:

- 1. Learn the concept of Modules and Packages
- 2. Learn the concept of Module as a script.
- 3. Learn Artificial Intelligence problems and techniques

List of Practical's (15)

- 1. Write a program to use Math module.
- 2. Write a program to use OS module.
- 3. Write a program to use different packages.
- 4. Write a program to use sub packages.
- 5. Write a program to Executing a Module as a Script
- 6. Write a Case study on AI with python.
- 7. Write a Case study on AI in Medicals.
- 8. Write a Case study on AI in Agriculture.
- 9. Write a Case study on AI in Education.
- 10. Write a Case study on AI in Manufacturing.

Learning Outcomes:

- 1. Student should get Knowledge Modules and Packages.
- 2. Student should get Knowledge of various fields of AI.

Reference Books:

- Stuart Russell and Peter Norvig (1995), Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.
- 14. Shai shalev-shwartz, Shai Ben-David: Understanding Machine Learning from Theory to algorithms, Cambridge University Press
- 15. Artificial Intelligence by Elaine Rich, Kevin Knight and Nair, TMH
- 16. BoS Content: Books, Course Notes, Digital contents, Blogs developed by the BoS for bridging the gaps in the syllabus, problem solving approaches and advances in the course

DCSEP202 (Project): (Contact Hrs. 30/60, Credits: 1/2)

J	BOS Sub-Committee		Expert Committee
1.	Mr.R.P.Waghamare	Chairman	1. Mr. Mayur More(Academic Expert)
			(S.G.M.College,Karad)
2.	Ms.B.A.Pawar	Member	2. Santosh Kapase(Industrial Expert)
			(Capgemini India)

Diploma Programme, YCIS(Autonomous), Satara